Journal of Organometallic Chemistry, 310 (1986) 47-54 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ANIONIC TOLYLMETHYLIDYNE(CARBABORANE)TUNGSTEN COMPLEXES: PROTONATION AND REACTION WITH TRIMETHYLPHOSPHINE

ALUN P. JAMES and F. GORDON A. STONE

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS (Great Britain) (Received February 10th, 1986)

Summary

Protonation of the closely related salts $[N(PPh_3)_2][W(\equiv CC_6H_4Me-4)(CO)_2(\eta-1,2-C_2B_9H_9R_2)]$ (Ia, R = H; Ib, R = Me) affords structurally different products: $[N(PPh_3)_2][W_2(\mu-H){\mu-C_2(C_6H_4Me-4)_2}(CO)_4(\eta-1,2-C_2B_9H_{11})_2]$ (III) and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-1,2-C_2B_9H_{10}Me_2)]$ (V), respectively. Treatment of Ib, with PMe_3 gives the ketenyl complex $[N(PPh_3)_2][W(CO)(PMe_3){\eta^2-C(C_6H_4Me-4)C(O)}(\eta-1,2-C_2B_9H_9Me_2)]$ (VI). Protonation and methylation of the latter yields the alkyne-tungsten compounds $[W(CO)(PMe_3){\eta-C_2(OR')(C_6H_4Me-4)}(\eta-1,2-C_2B_9H_9Me_2)]$ (IXa, R' = H; IXb, R' = Me).

Introduction

Considerations based on the isolobal model [1,2] recently led us to prepare the salts $[N(PPh_3)_2][W(\equiv CC_6H_4Me-4)(CO)_2(\eta-1,2-C_2B_9H_9R_2)]$ (Ia, R = H; Ib, R = Me) [3]. These species are related to the neutral complex $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (II) [4] by substitution of the ligand $C_5H_5^-$ in the latter by $C_2B_9H_9R_2^{2-}$ groups in the former. Anionic metal complexes containing alkylidyne ligands are relatively rare [5], and yet are likely to be useful reagents for preparative work. Indeed, the salts I have been employed in the synthesis of dimetal compounds containing bonds between tungsten and other metals, e.g. Mo [6], Ru [7], Rh and Au [3]. The non-innocent behaviour of the carbaborane ligand in several of the syntheses has added a novel dimension to the work.

In this paper we report studies on the protonation of the complexes I, as well as the reaction between Ib and PMe₃. Previously similar investigations have been carried out with II, thus allowing comparisons to be made between the behaviour towards common reagents of these neutral and anionic carbyne-tungsten species.

Results and discussion

Treatment of Ia with HBF₄ · Et₂O in CH₂Cl₂ at room temperature afforded the ditungsten complex $[N(PPh_3)_2][W_2(\mu-H){\mu-C_2(C_6H_4Me-4)_2}(CO)_4(\eta-1,2 (C_2 B_0 H_{11})_2$ (III). Earlier we showed [8] that protonation of II yields the ditungsten compound $[W_2(\mu-H){\mu-C_2(C_6H_4Me-4)_2}(CO)_4(\eta-C_5H_5)_2][BF_4]$ (IV). The relationship between the salts III and IV is apparent on the basis of the isolobal model [1]. Both compounds have tungsten-tungsten bonds bridged by the alkyne $C_2(C_6H_4Me-4)_2$ and the hydrido ligand, but the difference in formal charge between $C_2 B_9 H_{11}^{2-}$ and $C_5 H_5^{-}$ necessitates that III be an anionic complex and that IV be a cationic complex. The synthesis of III by protonation of Ia probably proceeds via a similar pathway to that proposed for the formation of IV [8].

The IR spectrum of III shows three bands in the carbonyl stretching region at 2024, 2001 and 1937 cm⁻¹, and a broad band at 2548 cm⁻¹ due to the B-H groups. The presence of the bridging hydrido ligand in III was firmly established by the appearance in the ¹H NMR spectrum of a resonance at δ -13.32 which showed

48

SCHEME 1. $R = C_6H_4$ Me-4, $cp = \eta - C_5H_5$, $cb = \eta - 1, 2 - C_2B_9H_{11}$, a-d are CO ligands, and the μ -H ligand *trans* to the μ -C₂R₂ group is omitted for clarity.

¹⁸³W satellite peaks [J(WH) 33 Hz]; this signal appearing as a quintet in the expected 0.04/1/6/1/0.04 ratio [9].

The ¹³C-{¹H} NMR spectrum of III was also informative, particularly when compared with that of IV [8,10]. The spectra of both compounds show two resonances for the carbonyl groups (III, 8 218.5 and 210.5; IV, 209.1 and 203.3 ppm). In contrast, however, the ligated carbon nuclei of the transversely bridging alkyne ligand gave rise to two signals in the spectrum of III (δ 69.5 and 61.7 ppm) but only one peak in the spectrum of IV (δ 60.7 ppm). We have previously suggested [8] that the data for IV may be understood in terms of the occurrence of a dynamic process in solution in which isomers with trans η -C₅H₅ groups interconvert (Scheme 1(A)) via a low energy pathway similar to that described in detail earlier for the closely related neutral complexes $[M_2(\mu-alkyne)(CO)_4(\eta-C_5H_5)_2]$ (M = Mo or W) [11-13]. Evidently a similar process might explain the ¹³C-{¹H} NMR data for III, but for this species the inequivalence of the carbon atoms of the ligated μ -C, group dictates a *cis* configuration for the carbaborane cage ligands (Scheme 1(B)). It will be appreciated that a number of alternative isomers could be envisaged to replace those depicted in Scheme 1. Those shown have been chosen to minimise steric interactions between the bulky pentahapto bound ligands and the μ -C₂(C₆H₄Me-4)₂ and μ -H groups, since it has been established that this feature tends to control the dynamic behaviour observed in the compound $\{Mo_2 \mid \mu - C_2 -$ $(SiMe_3)_2$ (CO)₄ $(\eta$ -C₅H₅)₂], containing the sterically demanding alkyne Me₃- $SiC \equiv CSiMe_3$ [11].

Protonation of Ib was next investigated, with interesting results, since the expected ditungsten compound similar to III was not formed. Reaction of Ib with

either HBF₄ · Et₂O or aqueous HI afforded a yellow oil which unfortunately resisted repeated attempts to crystallise. However, the spectroscopic properties of the product led to its formulation as the mononuclear tungsten tolylmethylidyne complex V shown. The IR spectrum showed the required two bands (2008 and 1912 cm^{-1}) in the carbonyl stretching region. These absorptions occur at higher frequency than those in the spectrum of Ib (1956 and 1874 cm^{-1}), as expected, since V is a neutral compound. The ¹H NMR spectrum of V showed a resonance at $\delta - 2.68$ characteristic for a $B(\mu-H)B$ bridge system. Thus in the spectrum of the compound $[exo-nido-6,10-{Rh(PPh_3)(PCy_3)}-6,10-\mu-(H)_2-7,8-\mu-(1',2'-CH_2C_6H_4CH_2)-10,11-\mu-$ (H)-7,8-C₂B₀H₂] the signal for the B(μ -H)B proton which is sited on the face of the carbaboranc cage occurs at δ -2.8 [14]. Two peaks were observed for the carbaborane cage methyl groups in both the ¹H and ¹³C-{¹H} NMR spectra of V (see Experimental), indicating a degree of asymmetry in the molecule. Likewise, the 13 C-{ 1 H] spectrum showed two different CO environments [δ 220.9 and 220.6 ppm]. A resonance at 230.9 ppm [J(WC) 128 Hz] is assigned to the ligated carbon of the terminally bound tolylmethylidyne group. In agreement, in a fully coupled ¹³C NMR spectrum this signal remained a singlet. There was thus no evidence for the presence of a W=CH(C_6H_4 Me-4) group. An unusual feature of this resonance is its appearance at such a relatively high field. In the ${}^{13}C{}^{1}H$ NMR spectra of compounds Ib and II the resonances for the alkylidyne-carbon nuclei are at 298.3 and 300.1 ppm, respectively [3,4]. Generally alkylidyne groups terminally bound to tungsten show signals for their ligated carbon atoms in the range ca. 270-330 ppm [15]. There are only a few known mononuclear metal species having resonances for the alkylidyne carbon nuclei more shielded, e.g. $[W(\equiv CC \equiv CPh)Br(CO)_4]$, δ 230.5 ppm [16].

The formulation proposed for V is supported by an independent synthesis involving treatment of $[W(\equiv CC_6H_4Me-4)Br(CO)_4]$ in tetrahydrofuran (thf) at $-20^{\circ}C$ with the sodium salt of the mono-anion 7,8-C₂B₉H₁₀Me₂⁻. Compound V may have a structural feature in common with the iron compex $[FeH(\eta-2,3-C_2B_4H_6)(\eta-C_5H_5)]$. It has been suggested [17] that in the latter a proton may cap a B₂Fe face of the *closo* pentagonal bipyramidal FeC₂B₄H₆ fragment. It is possible that in V the proton responsible for the NMR signal at $\delta - 2.68$ caps the B₂W face rather than edge-bridging a B-B bond of the tungsten-ligating $1,2-C_2B_9H_9Me_2$ fragment. However, if this were so the resonance for the unique proton would be expected to be somewhat more shielded than $\delta - 2.68$ ppm, in accord with the presence of hydrido-metal character [18].

Compound V may be deprotonated with K[BH(CHMeEt)₃], in the presence of $[N(PPh_3)_2]Cl$, reforming Ib. The complex $[FeH(\eta-2,3-C_2B_4H_6)(\eta-C_5H_5)]$ can also be deprotonated and, as with V, the process is reversible [17].

Treatment of a CH₂Cl₂ solution of Ib at -30° C with PMe₃ affords the purple crystalline salt VI. The IR spectrum showed a band for the terminal CO group at 1843 cm⁻¹ and an absorption at 1676 cm⁻¹ attributable to the ketenyl-carbonyl group. The ¹³C-{¹H} NMR spectrum of VI showed resonances at δ 223.6 [d, J(PC) 9 Hz], 198.1 and 190.5 ppm [d, J(PC) 5 Hz] which may be assigned to the WCO, ketenyl CO and CC_6H_4 Me-4 groups, respectively. The ³¹P-{¹H} NMR spectrum showed a characteristic signal for the PMe₃ ligand at δ -7.6 ppm with ¹⁸³W-³¹P satellite peaks [J(WP) 412 Hz].

Compound VI is an analogue of the complex $[W(CO)(PMe_3) \{ \eta^2 - C(C_6H_4Me_5) \}$

4)C(O){ $(\eta$ -C₅H₅)] (VII), prepared by treating II with PMe₃ [19]. Hence in reactions with the latter reagent, compounds Ib and II show a similar behavioural pattern but differ in affording anionic and neutral complexes, respectively. Protonation and methylation of VII occurs at the oxygen atom of the ketenyl ligand to yield the cationic tungsten-alkyne complexes [W(CO)(PMe₃){ η -C₂(C₆H₄Me-4)(OH)}(η -C₅H₅)][BF₄] (VIIIa) and [W(CO)(PMe₃){ η -C₂(C₆H₄Me-4)(OMe)}(η -C₅H₅)]-[SO₃CF₃] (VIIIb), respectively. In these species the alkynes function as four-electron donors [8]. It was therefore of interest to investigate the protonation and methylation of VI. Moreover if the products obtained were analogous to VIIIa and VIIIb they would be neutral complexes.

Treatment of VI with HBF₄ · Et₂O gave the purple compound IXa. Similarly, reaction of VI with CF₃SO₃Me yielded the related purple species IXb. These products each showed one carbonyl stretching band in their IR spectra (IXa, 1922; IXb, 1933 cm⁻¹); the absorptions being at higher frequency than the corresponding band (1843 cm⁻¹) in the spectrum of VI. The ¹H NMR spectrum of IXa showed a broad resonance at δ 9.50 which may be ascribed to the hydroxyl group, and the spectrum of IXb had a peak at δ 4.46 assigned to an OMe moiety. Both spectra showed two signals for the methyl substituents of the carbaborane cage, reflecting the asymmetry of the molecules. The ³¹P-{¹H} NMR spectra displayed resonances at δ -10.9 [J(WP) 397 Hz] (IXa) and -11.0 ppm [J(WP) 395 Hz] (IXb).

The ¹³C-{¹H} NMR spectra of the complexes IX are also informative, since the chemical shifts observed for the ligated carbon atoms of the alkyne groups are in accord with the latter functioning as four-electron donors. For IXa the resonances occur at δ 222.9 (\equiv COH) and 194.1 (\equiv CC₆H₄Me-4) ppm, and for IXb the signals are at 225.2 (\equiv COMe) and 186.7 ppm (\equiv CC₆H₄Me-4). All the resonances appear as doublets due to ³¹P-¹³C coupling. These chemical shifts are ca. 100 ppm more deshielded that those observed in complexes in which alkyne ligands act as two-electron donors. This effect has been discussed in detail by Templeton et al. [20].

The compounds IX appear to be the first examples of mononuclear metal complexes containing both carbaborane and alkyne groups, however, dimetal compounds $[MoW{\mu-\sigma,\eta^3-CH(C_6H_4Me-4)(C_2B_9H_8Me_2)}(CO)_3(\eta-RC_2R)(\eta-C_9H_7)]$ (R = Me or Et) containing this combination of ligands have been prepared [6]. Related to the synthesis of IXb is that of the compound $[W(CN)(CO)(\eta-C_2(OMe)Me)(\eta-C_5H_5)]$, prepared by methylation of the salt $[NBu_4^n][W(CN)(CO){\eta^2-C(Me)C(O)}-(\eta-C_5H_5)]$ [21], which like VI contains an anionic tungsten centre ligated by a ketenyl group.

Experimental

Solvents were rigorously dried before use, and all reactions were carried out in Schlenk tubes, under oxygen-free nitrogen. Light petroleum refers to the fraction of b.p. 40-60°C. Alumina used for chromatography columns (20×2 cm) was B.D.H. aluminium oxide (Brockman activity II). The infrared spectra were recorded in CH₂Cl₂ with a Nicolet 10-MX FT spectrophotometer, and the NMR measurements were made with JNM FX 90Q and FX 200 instruments. All coupling constants listed are in Hz. Phosphorus-31 chemical shifts (ppm) are positive to high frequency of 85% H₃PO₄ (external). The NMR spectra were measured in CD₂Cl₂ (¹H and ³¹P-{¹H}) or CD₂Cl₂/CH₂Cl₂ (¹³C-{¹H}). The reagents [W(=CC₆H₄Me-4)Br(CO)₄] [22] and Na₂[7,8-C₂B₉H₉R₂'] (R' = H or Me) [23] used to obtain Ia and Ib were prepared by methods previously described.

Protonation of the salts $[N(PPh_3)_2][W(\equiv CC_6H_4Me-4)(CO)_2(\eta-1,2-C_2B_9H_9R_2)]$ (R = H or Me)

(i) Treatment of Ia (0.26 g, 0.25 mmol) in CH_2Cl_2 (10 cm³) with HBF₄ · Et₂O (0.05 cm³) afforded a yellow solution. Solvent was removed in vacuo, after which the residue was dissolved in CH_2Cl_2/Et_2O (20 cm³, 1/1) and chromatographed. Elution with the same solvent mixture gave a yellow solution. Removal of solvent in vacuo, and crystallisation of the residue from $CH_2Cl_2/light$ petroleum (5 cm³, 1/1) at $-20^{\circ}C$ gave yellow microcrystals of $[N(PPh_3)_2][W_2(\mu-H){\mu-C_2(C_6H_4Me-4)_2} (CO)_4(\eta-1,2-C_2B_9H_{11})_2]$ (III) (0.09 g, 47%) (Found: C, 48.5; H, 5.4. $C_{60}H_{67}B_{18}NO_4-P_2W_2$ calcd.: C, 48.2; H, 4.5%); ν_{max} (BH) at 2548 cm⁻¹; ν_{max} (CO) at 2024m, 2001m and 1937s cm⁻¹. NMR: ¹H, δ -13.32 [s, 1H, μ -H, J(WH) 33], 2.33 (s, 6H, Me-4), and 6.95-7.67 (m, 38H, C_6H_4 and Ph); ¹³C-{¹H}, δ 218.5, 210.5 (CO), 138.6-125.3 (C_6H_4 and Ph), 69.5, 61.7 (CC_6H_4Me-4), 46.7, 45.6 ($C_2B_9H_{11}$), and 20.8 ppm (Me-4).

(ii) A 57% aqueous solution of HI was added dropwise to a CH_2Cl_2 (10 cm³) solution of Ib (0.52 g, 0.50 mmol) until an IR spectrum of the mixture showed that all of the salt had been consumed. Solvent was removed in vacuo, and the oily residue was extracted with thf/light petroleum (20 cm³, 1/1). Removal of solvent in vacuo afforded [W(= CC_6H_4Me-4)(CO)₂(η -1,2- $C_2B_9H_{10}Me_2$)] (V) as a dark yellow oil, ν_{max} (BH) at 2549 cm⁻¹; ν_{max} (CO) at 2008s and 1912s cm⁻¹. NMR: ¹H, δ - 2.68 [br, 1H, B(μ -H)B], 1.58 (s, 3H, Me), 1.92 (s, 3H, Me), 2.22 (s, 3H, Me-4), 6.72 and 6.88 [(AB)₂, 4H, C_6H_4 , J(AB) 8]; ¹³C-{¹H}, δ 230.9 [C=W, J(WC) 128], 220.9 [WCO, J(WC) 137], 220.6 [WCO, J(WC) 130], 145.8 [C¹(C₆H₄)], 133.8-125.9 (C₆H₄), 32.5, 30.3 (Me), and 20.7 ppm (Me-4).

Reaction of $[N(PPh_3)_2][W \equiv CC_6H_4Me-4)(CO)_2(\eta-1,2-C_2B_9H_9Me_2)]$ with PMe₃ Trimethylphosphine (2.5 cm³ of a 0.50 mol dm⁻³ solution in light petroleum) was added to Ib (1.04 g, 1.0 mmol) in CH₂Cl₂ (10 cm³) at -30° C. The solution turned purple, and the reactants were stirred for 10 min. Solvent was removed in vacuo, and the residue washed with Et₂O (3 × 10 cm³). In this manner, purple microcrystals of [N(PPh₃)₂][W(CO)(PMe₃){ η^2 -C(C₆H₄Me-4)C(O){(η -1,2-C₂B₉H₉Me₂)] (VI) (0.97 g, 87%) were obtained (Found: C, 38.1; H, 5.7; N, 0.8. C₅₃H₆₁B₉NO₂P₃W calcd.: C, 37.6; H, 5.5; N, 1.0%); ν_{max} (BH) at 2525cm⁻¹; ν_{max} (CO) at 1843s and 1676 m cm⁻¹. NMR (measured at -40° C): ¹H, δ 1.52 [d, 9H, MeP, J(PH) 10], 2.12 (s, 3H, Me-4), 2.31 (s, 6H, Me), and 7.26–7.81 (m, 34H, C₆H₄ and Ph); ¹³C-{¹H}, δ 223.6 [d, CO, J(PC) 9], 198.1 [C(C₆H₄Me-4)C(O)], 190.5 [d, C(C₆H₄Me-4)C(O), J(PC) 5], 136.7–120.1 (C₆H₄ and Ph), 30.5, 29.2 (Me), 20.8 (Me-4), and 18.4 ppm [d, MeP, J(PC) 37]; ³¹P-{¹H}, δ – 7.6 ppm [J(WP) 412].

Protonation and methylation of $[N(PPh_3)_2][W(CO)(PMe_3)(\eta^2-C(C_6H_4Me-4)C(O))-(\eta-1,2-C_2B_0H_0Me_2)]$

(i) Excess of HBF₄ · Et₂O (0.1 cm³) was added to VI (0.52 g, 0.50 mmol) in CH₂Cl₂ (10 cm³) at -40° C, and the mixture was warmed to room temperature. Solvent was removed in vacuo, the residue extracted with Et₂O (2 × 10 cm³) and the extracts filtered through a Celite pad (ca. 3 cm). Solvent was removed in vacuo, and the solid remaining was crystallised from Et₂O/light petroleum (10 cm³, 1/1) at -78° C to give purple crystals of [W(CO)(PMe₃){ η -C₂(OH)(C₆H₄Me-4)}(η -1,2-C₂B₉H₉Me₂)] · Et₂O (IXa) (0.46 g) (Found: C, 36.9; H, 6.6. C₁₇H₃₂B₉O₂PW.C₄H₁₀O calcd.: C, 36.8; H, 6.0%); ν_{max} (BH) at 2532m cm⁻¹; ν_{max} (CO) at 1922s cm⁻¹. NMR (measured at -40° C): ¹H, δ 1.46 [d, 9H, MeP, J(PH) 10], 1.82 (s, 3H, Me), 2.17 (s, 3H, Me-4), 2.33 (s, 3H, Me), 7.17 and 7.38 [(AB)₂, 4H, C₆H₄, J(AB) 8], and 9.50 [s(br), 1H, OH]; ¹³C-{¹H}, δ 230.5 [d, CO, J(PC) 9], 222.9 [d, COH, J(PC) 6], 194.1 [d, CC₆H₄Me-4, J(PC) 6], 140.9 [C¹(C₆H₄)], 132.3, 129.6, 127.5 (C₆H₄), 30.8, 29.9 (Me), 21.4 (Me-4), and 19.7 ppm [d, MeP, J(PC) 39]; ³¹P-{¹H}, δ -10.9 ppm [J(WP) 397].

(ii) Compound VI (0.52 g, 0.50 mmol) in CH₂Cl₂ (15 cm³) at -40° C was treated with CF₃SO₃Me (0.2 cm³). The resulting purple solution was stirred for 10 min, and then allowed to warm to room temperature. Solvent was removed in vacuo, and the residue extracted with Et₂O (2 × 10 cm³). The extracts were filtered through a Celite pad (ca. 5 cm). Removal of solvent, and crystallisation of the solid from Et₂O/light petroleum (10 cm³, 1/1) at -78° C gave purple crystals of [W(CO)(PMe₃){ η -C₂(OMe)(C₆H₄Me-4)}(η -1,2-C₂B₉H₉Me₂)] (IXb) (0.21 g, 79%) (Found: C, 36.2; H, 5.7; C₁₈H₃₄B₉O₂PW calcd.: C, 35.9; H, 6.1%); ν_{max} (BH) at 2530 cm⁻¹; ν_{max} (CO) at 1933s cm⁻¹. NMR (measured at -40° C): ¹H, δ 1.60 [d, 9H, MeP, J(PH) 10], 2.06 (s, 3H, Me), 2.14 (s, 3H, Me-4), 2.42 (s, 3H, Me), 4.46 (s, 3H, OMe) 7.72 and 7.47 [(AB)₂, 4H, C₆H₄, J(AB) 8]; ¹³C-{¹H}, δ 228.8 [d, CO, J(PC) 9 J(WC) 136], 225.2 [d, COMe, J(PC) 10], 186.7 [d, CC₆H₄Me-4, J(PC) 6], 139.8 [C¹(C₆H₄)], 134.8, 129.2, 128.9 (C₆H₄), 64.9 (OMe), 30.1, 29.8 (Me), 20.7 (Me-4), and 20.3 ppm [d, MeP, J(PC) 31].

Acknowledgement

We thank the S.E.R.C. for a research studentship (to A.P.J.) held as a CASE award with Shell Research Ltd.

References

- 1 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 21 (1982) 711.
- 2 F.G.A. Stone, Angew. Chem., Int. Ed. Engl., 23 (1984) 89.
- 3 M. Green, J.A.K. Howard, A. P. James, C.M. Nunn, and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1984) 1114; J. Chem. Soc., Dalton Trans., (1986) in press.
- 4 E.O. Fischer, T.L. Lindner, G. Huttner, P. Friedrich, F.R. Kreissl, and J.O. Besenhard, Chem. Ber., 110 (1977) 3397.
- 5 E.O. Fischer and D. Wittmann, J. Organomet. Chem., 292 (1985) 245; E.O. Fischer, A.C. Filippou, H.G. Alt, and U. Thewalt, Angew. Chem., Int. Ed. Engl., 24 (1985) 203.
- 6 M. Green, J.A.K. Howard, A.P. James, A.N. de M. Jelfs, C.M. Nunn, and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1985) 1778; J. Chem. Soc., Dalton Trans., (1986) in press.
- 7 M. Green, J.A.K. Howard, A.N. de M. Jelfs, O. Johnson, and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1986) in press.
- 8 J.A.K. Howard, J.C. Jeffery, J.C.V. Laurie, I. Moore, F.G.A. Stone, and A. Stringer, Inorg. Chim. Acta, 100 (1985) 23.
- 9 B.W. Haines and P. Legzdins, Organometallics, 1 (1982) 116.
- 10 J.C.V. Laurie, Ph. D. Thesis, Bristol University, 1984.
- 11 J.A. Beck, S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.J. Winter, and P. Woodward, J. Chem. Soc., Dalton Trans., (1982) 195.
- 12 W.I. Bailey, M.H. Chisholm, F.A. Cotton, and L.A. Rankel, J. Am. Chem. Soc., 100 (1978) 5764.
- 13 G.A. Carriedo, J.A.K. Howard, D.B. Lewis, G.E. Lewis, and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1985) 905.
- 14 J.A. Long, T.B. Marder, P.E. Behnken, and M.F. Hawthorne, J. Am. Chem. Soc., 106 (1984) 2979; C.B. Knobler, T.B. Marder, E.A. Mizusawa, R.G. Teller, J.A. Long, P.E. Behnken, and M.F. Hawthorne, ibid., 106 (1984) 2990.
- 15 B.E. Mann and B.F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981, pp. 144–146.
- 16 F. Köhler, H.J. Kalder, and E.O. Fischer, J. Organomet. Chem., 113 (1976) 11; E.O. Fischer, H.J. Kalder, and F.H. Kohler, ibid., 81 (1974) C23.
- 17 L.G. Sneddon, D.C. Beer, and R.N. Grimes, J. Am. Chem. Soc., 95 (1973) 6623.
- 18 In reference 17 the chemical shift of the proton capping the B_2 Fe face in $[FeH(\eta-2,3-C_2B_4H_6)(\eta-C_5H_5)]$ is listed as δ 14.40, using an older convention for referencing chemical shifts (Professor R.N. Grimes, personal communication). The resonance thus becomes -14.40 ppm under the present day convention, thereby falling within the expected range for a transition metal-bound proton, See R.N. Grimes (Ed.), Metal Interactions with Boron Clusters, Plenum Press, New York, 1982, Chapter 7.
- 19 F.R. Kreissl, K. Eberl, and W. Uedelhoven, Chem. Ber., 110 (1977) 3782.
- 20 B.C. Ward and J.L. Templeton, J. Am. Chem. Soc., 102 (1980) 1532, 3288; J.L. Templeton, P.B. Winston, and B.C. Ward, ibid., 103 (1981) 7713.
- 21 W.J. Sieber, K. Eberl, M. Wolfgruber, and F.R. Kreissl, Z. Naturforsch. B, 38 (1983) 1159.
- 22 E.O. Fischer, T. Selmayr, F.R. Kreissl, and U. Schubert, Chem. Ber., 110 (1977) 2574.
- 23 M.F. Hawthorne, D.C. Young, T.D. Andrews, D.V. Howe, R.L. Pilling, A.D. Pitts, M. Reintjes, L.F. Warren, and P.A. Wegner, J. Am. Chem. Soc., 90 (1968) 879.